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Section VI:  Displacement Damage and Special
Issues for Optoelectronics

Allan H. Johnston
Electronic Parts Engineering Office

Section 514
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Displacement Damage for High Energy Transfer

 Displacement Cascade

 Several damage clusters
are produced by the
collision

 Damage is caused by
movement of lattice atom
after primary collision
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Displacement Damage

 Effects of Displacement Damage in Semiconductors
– Minority carrier lifetime is degraded

• Reduces gain of bipolar transistors
• Also affects optical detectors and some types of light-emitting diodes
• Effects become important for proton fluences above 1 x 1010 p/cm2

– Mobility and carrier concentration are also affected

 Particles Producing Displacement Damage
– Protons (all energies)
– Electrons with energies above 150 keV
– Neutrons (from on-board power sources)
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Energy Dependence of Displacement Damage in Silicon
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Displacement Damage in a Voltage Regulator

0

3

2

1

0.5

0

Vo
lta

ge
 to

 S
ta

rt
 In

te
rn

al
 R

eg
ul

at
or

Proton Fluence (p/cm2)

Cut-In Voltage
Catastrophic

failure occurs when
start-up voltage reaches

cut-in voltage

1.5

2.5

5x1010 1x1011 1.5x1011 2x1011 2.5x1011

National LM137

50 MeV protons

8 16 24 32 40

Typical results
with cobalt-60
gamma rays

Equivalent Total Dose [krad(Si)]
0



123

100

In
pu

t O
ffs

et
 V

ol
ta

ge
 (m

V
)

1000

1

10

0.1

0.01
1 10 100

Equivalent Total Dose [krad(Si)]

Linear technology
RH1056 op-amp
(JFET input stage)

200 MeV
protons

Catastrophic
failure between
50 and 70 krad

Cobalt-60
gamma rays

Radiation level guaranteed
by manufacturer

Displacement Damage in a Hardened Op-Amp



124

Displacement Damage Comparisons

 Total  Equiv. Neutron
Particle            Dose  Fluence  Fluence
Type [rad(Si)]  (#/cm2) (n/cm2)

electrons   100k 3.3 x 1012 3.8 x 1011
(100 MeV)

electrons   100k 4.1 x 1012 8.6 x 1010
(2 MeV)

protons            100k 6.2 x 1011 1.4 x 1012
(50 MeV)
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Degradation of Light-Emitting Diodes
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    LED
(Surface emitting)

Phototransistor
Phototransistor

Silicone coupling
compound

  LED
(emits from
side and top)

Sandwich structure
(direct coupling to detector)

(a) Lateral structure
(reduced coupling efficiency)

(b)

Optocoupler Construction
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Optocoupler Degradation
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Failure of Optocouplers on Topex-Poseidon

 High-Inclination Earth Orbit
– 1300 km, 98 degrees
– Goes through lower edge of proton radiation belts

 Optocouplers Used in Five Different Circuit Applications
– Failure occurred in thruster status application after 2.7 years

• Design did not consider displacement damage
• Circuit failure corresponds to a factor of four reduction in current-

transfer ratio
• Cold “spares” of little value for displacement damage

– Optocouplers continue to work satisfactorily in thruster firing circuit
• Consequence of higher circuit margin used by designers
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63 MeV Protons
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Ceramic
GaAsP Light-
Emitting Diodes
(under ceramic)

Silicon
Detector/Amplifier

Optocoupler Transients

Voltage System Shutdown Occurred
on Hubble Space Telescope

– Observed after upgraded electronics
were installed

– Strongly correlated with orbit pattern

Laboratory Tests Showed that
Shutdown Was Caused by
Transients from Protons

– Dominated by charge in
photodetector

– Heavy ions also produce transients
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Example of Transients from Protons for 6N134
Optocoupler
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Angular Dependence of  Proton Upset Cross Section
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Course Summary
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Environments and System Requirements

 JPL Systems Have a Variety of Mission Requirements
– Short duration missions with low radiation levels
– Interplanetary missions with extremely high levels
– Earth-orbiting missions where proton effects dominate

 Overall Mission Requirements Must Be Understood
– “Reflexive” policies and procedures should be avoided
– Testing is not always required

 Using Parts Where Radiation Data Exists Can Be Cost Effective
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Single-Event Upset

 SEE Effects Have Become Worse As Parts Have Evolved
– Device scaling
– Complex internal design and architecture
– Functional interrupt problems

 SEE Testing Has Become More Complex
– Device complexity
– New phenomena
– Multiple-bit upset

 Successful Use of Commercial Parts Depends on System
Design
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Permanent Damage from Single-Particles

 Latchup Is the Most Critical Catastrophic Damage Issue
– Many CMOS circuits are sensitive to latchup
– Difficult and costly to characterize latchup in detail
– Best alternative is to eliminate latchup-prone devices

 Gate Rupture and Burnout Effects Are Becoming More
Important
– Previously only an issue for power MOSFETs
– Permanent damage has been observed in pulse-width modulators
– Testing and qualification methods need to consider these effects
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Total Dose Effects

 Total Dose Damage Remains a Key Issue for Many Technologies
– Field oxide failure causes huge increases and functional failure in

CMOS
– Gate oxide threshold shift is important in many technologies
– Internal charge pumps are usually highly susceptible to total dose

damage

 Low Dose Rate Damage Effects Are a Major Issue for Bipolar Devices
– Problem not completely understood
– Wide variation among manufacturers
– JPL has an excellent facility for tests at very low dose rate

 Devices with High Maximum Voltage Ratings Are Often a Problem
– Low doping levels
– Increased oxide thickness
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Permanent Damage from Protons and Electrons

 Permanent Damage Issues Are Often Overlooked

 Technologies Where Displacement Effects Matter
– Linear integrated circuits
– Light emitting diodes
– Optical detectors
– Optocouplers

 Cobalt-60 Gamma Rays Are a Compromise
– Cost effective
– Appropriate for technologies where displacement damage doesn’t

matter
– Provides no information about displacement damage effects


